/images/logo.png
A notebook for something

Serve LLaVa 1.6

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
"""

CUDA_VISIBLE_DEVICES=0,1

"""
import logging

import torch

from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria

from PIL import Image

import requests
from PIL import Image
from io import BytesIO
from transformers import TextStreamer

def load_image(image_file):
    """
    """
    if image_file.startswith('http://') or image_file.startswith('https://'):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert('RGB')
    else:
        image = Image.open(image_file).convert('RGB')
    return image

def load_model(hf_model_name='liuhaotian/llava-v1.6-34b'):
    """    
    """
    disable_torch_init()
    #model_path = 'liuhaotian/llava-v1.5-7b'
    #model_path = 'liuhaotian/llava-v1.5-13b'
    model_path = hf_model_name #'liuhaotian/llava-v1.6-34b'
    model_name = get_model_name_from_path(model_path)  # 'llava-v1.5-7b'
    model_base = None
    load_8bit = False
    load_4bit = True
    device = 'cuda'
    tokenizer, model, image_processor, context_len = load_pretrained_model(
        model_path, model_base, model_name, load_8bit, load_4bit, device=device)
    if 'llama-2' in model_name.lower():
        conv_mode = "llava_llama_2"
    elif "v1" in model_name.lower():
        conv_mode = "llava_v1"
    elif "mpt" in model_name.lower():
        conv_mode = "mpt"
    else:
        conv_mode = "llava_v0"
    return tokenizer, model, image_processor, conv_mode


def build_prompt(image_message=None, system_message=None):
    # https://docs.google.com/document/d/1CflrE1mNU-rz_j7H2Au580JA9JYGKckATMNS5uQrG2w/edit#heading=h.hrdqg3a8zs4
    original_system_message = "A chat between a curious human and an artificial intelligence assistant. \
    The assistant gives helpful, detailed, and polite answers to the human's questions"
    sys_message = system_message if system_message is not None else original_system_message
    if image_message is not None:
        return f'{sys_message} USER: {image_message} ASSISTANT:'
    else:
        return f'{sys_message} USER: <image> Describe the image in details. What are the primary object in this image? Does this image have a identifiable landmark or tag? ASSISTANT:'

def generate(image_file:str,
             user_message:str,
             system_message:str,
             tokenizer, model,
             image_processor, conv_mode, temperature:float=0., max_new_tokens:int=512):
    """

    @Args:
        image_file = "https://llava-vl.github.io/static/images/view.jpg"
    """
    conv = conv_templates[conv_mode].copy()
    #if "mpt" in model_name.lower():
    #    roles = ('user', 'assistant')
    #else:
    #    roles = conv.roles
    roles = conv.roles
    # logging.info(f'Roles: {roles}')  # ('USER', 'ASSISTANT')

    image = load_image(image_file)
    image_tensor = process_images([image], image_processor, model.config)
    if type(image_tensor) is list:
        image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
    else:
        image_tensor = image_tensor.to(model.device, dtype=torch.float16)

    if image is not None:
        # first message
        if model.config.mm_use_im_start_end:
            image_message = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + user_message
        else:
            image_message = DEFAULT_IMAGE_TOKEN + '\n' + user_message
        conv.append_message(conv.roles[0], image_message)  # USER: <image> {question}
        image = None
    else:
        # later messages
        conv.append_message(conv.roles[0], user_message)
    # message = "<image> prompt"
    conv.append_message(conv.roles[1], None)  # ASSISTANT:
    #prompt = conv.get_prompt()
    """
    A chat between a curious human and an artificial intelligence assistant. 
    The assistant gives helpful, detailed, and polite answers to the human's questions. 
    USER: <image> {question} ASSISTANT:
    """

    prompt = build_prompt(image_message, system_message)  # message

    input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    keywords = [stop_str]
    stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
    streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

    with torch.inference_mode():
        output_ids = model.generate(
                input_ids,
                images=image_tensor,
                do_sample=True if temperature > 0 else False,
                temperature=temperature,
                max_new_tokens=max_new_tokens,
                streamer=streamer,
                use_cache=True,
                stopping_criteria=[stopping_criteria])

    outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
    resp = outputs.rstrip('</s>')
    logging.info(f'Q: {prompt}\nA:{resp}')
    return resp
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

MODEL_NAME = 'liuhaotian/llava-v1.6-34b'

class Payload(BaseModel):
    image_url: str  # required
    user_message:str = ''
    system_message:str = ''
    model: str = MODEL_NAME
    temperature: float = "0.0"
    max_new_tokens: int = 512


TOKENIZER, MODEL, IMAGE_PREPROCESSOR, CONV_MODE = load_model(MODEL_NAME)
response = generate(image_file=payload.image_url,
             user_message=payload.user_message,
             system_message=payload.system_message,
             tokenizer=TOKENIZER,
             model=MODEL,
             image_processor=IMAGE_PREPROCESSOR,
             conv_mode=CONV_MODE,
             temperature=float(payload.temperature),
             max_new_tokens=payload.max_new_tokens)